Shrinkable decompositions of non-metric manifolds can produce other manifolds
نویسندگان
چکیده
منابع مشابه
Low dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملCanonical Decompositions of 3–Manifolds
We describe a new approach to the canonical decompositions of 3–manifolds along tori and annuli due to Jaco–Shalen and Johannson (with ideas from Waldhausen) — the so-called JSJ–decomposition theorem. This approach gives an accessible proof of the decomposition theorem; in particular it does not use the annulus–torus theorems, and the theory of Seifert fibrations does not need to be developed i...
متن کاملMetric Learning on Manifolds
In recent years, manifold learning has become increasingly popular as a tool for performing nonlinear dimensionality reduction. This has led to the development of numerous algorithms of varying degrees of complexity that aim to recover manifold geometry using either local or global features of the data. Building on the Laplacian Eigenmap framework, we propose a new paradigm that offers a guaran...
متن کاملSymmetries of Contact Metric Manifolds
We study the Lie algebra of infinitesimal isometries on compact Sasakian and K–contact manifolds. On a Sasakian manifold which is not a space form or 3– Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K–contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automor...
متن کاملIndefinite Almost Paracontact Metric Manifolds
In this paper we introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it can not admit an (ε...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: General Topology and its Applications
سال: 1979
ISSN: 0016-660X
DOI: 10.1016/0016-660x(79)90026-6